
1

Modernize your CI/CD



2

Continuous integration and delivery helps DevOps teams ship higher quality software, faster. But is 
all CI/CD created equal? What does successful CI/CD implementation look like and how do you know 
you’re on the right track?

To understand how CI/CD makes organizations more successful, it helps to look at the DevOps 
challenges a comprehensive CI/CD solves and how it can improve business revenue long term. When 
organizations prioritize a good CI/CD strategy, it’s a competitive edge that has long-lasting benefits 
across many teams. When looking into modernizing your CI/CD, consider these four criteria:

 » DevOps challenges a comprehensive CI/CD should solve.
 » The revenue impact of a poor or non-existent CI/CD strategy.
 » Competitive benefits and how to measure success.
 » How to find the right CI/CD solution to meet your needs.

Modernizing your architecture and embracing CI/CD is what successful companies are doing to 
release better software and increase development speed. When organizations implement CI/CD best 
practices, they get the added benefit of generating more revenue in the long run.

What challenges do I face?
1. Maintenance and integration costs, predominantly human resources costs.
A large percentage of the overall IT budget goes to support teams of engineers needed to integrate 
and maintain a complex toolchain. An enterprise company with 1,000 developers could need up to 
40 engineers just to maintain the DevOps toolchain instead of allocating these resources towards 
delivering business value.

2. Development is slowed/blocked by the operations team.
The quintessential challenge of the pre-DevOps world is that dev teams are incentivized to increase 
innovation velocity by shipping new features. Operations teams are incentivized for stability, uptime, 
and error reduction. The higher the development velocity, the greater the chance for downtime and 
errors – so these teams are naturally at odds with each other. Dev leaders don’t always have enough 
enticing evidence or incentive to go to the Ops team to advocate for increased deployment velocity, 
and vice versa.



3

3. Developers doing ops.
Today, teams and individual developers base the code they produce on the capabilities of their 
environment rather than the needs of the business.

What do these look like in 
practice?
A big portion of resources and budget goes to undifferentiated integration and 
maintenance.
Teams are siloed by their tools – each team has their favorite and is optimized to work within these 
specialized tools only. It is difficult to collaborate and troubleshoot across the stack due to a lack of 
visibility.

Code sometimes never gets to production at all.
There is a delay between code being written and driving value. When problems or errors arise and 
need to be sent back to the developer, it becomes difficult to troubleshoot because the code isn’t 
fresh in their mind (context switching). They have to stop working on their current project and go 
back to the previous code to troubleshoot. So much time might have passed that the code is no 
longer deployable in its current state. In addition to wasting time and money, this is demoralizing for 
the developer who doesn’t get to see the fruit of their labor.

Developers worry about environments, not business logic.
Environment dependencies and configuration distracts developers from tasks they’re better 
equipped to handle. They may even be spending time trying to decide what size VM they need to 
deploy to. In this order “DevOps” means “Developers have to do both dev and ops.” Only a small 
percentage of developers actually enjoy this arrangement with most asking, “I’m a developer, please 
stop asking me to do operations.”



4

What are the business impacts of 
poor CI/CD?
1. A large portion of IT budget is spent on undifferentiated engineering
Opportunity costs play a much larger role in the development process than we realize. Organizations 
can only afford so many engineers at one time, and systems that require extensive maintenance 
means fewer engineers are working on revenue-generating projects. This will lead to slower 
innovation and slower growth in the long term. Undifferentiated engineering means too many 
individuals are having to focus on one thing – maintenance.

2. Delayed (and even unrealized) revenue
This is the impact of lost opportunity costs. When there are too many dependencies, too many 
handoffs, and too many manual tasks, it causes delays between when code is written and when the 
business gets value from that code. In worst cases, code is written and the business never gets any 
value from it at all. Code can sit in limbo waiting for others to manually test it, and by the time it’s 
finally reviewed it’s already irrelevant. The opportunity cost essentially doubles: Engineers were paid 
to work on code that never deployed, and the business loses out on revenue the code could have 
generated.

3. Lower developer productivity, lower developer happiness, and less reliable 
software
Downtime = lost revenue. To avoid that dreaded downtime, developers are spending time working on 
infrastructure and configuration, and they’re also not spending that time delivering business logic. In 
both cases, they’re being less productive and working outside of their core competencies. Developer 
hiring and retention will inevitably suffer. Uptime and resiliency are also affected because people who 
aren’t domain experts are put in charge of determining infrastructure. It’s a self-fulfilling prophecy.



5

What does it look like if a magic 
wand were to solve it today?
1. More engineers are working on the app instead of maintenance
The organization has the right amount of developers devoted to driving business value and spends 
more time on innovation instead of undifferentiated heavy lifting. Less of the budget is spent on 
activities that don’t generate revenue.

2. Developers see their code in production quickly
Infrastructure and deployment are fully automated. Everyone loves to see the output of their work, 
developers especially, and the business gets to see the benefits of this code right away. Deploying 
smaller chunks of code is less risky when developers can take advantage of test automation, so they 
have less overhead and coordination with a QA team forced to test manually.

3. Developers are focused on solving business problems
Code is written to be environment and cloud agnostic. Development teams own the uptime of their 
own services, but they are fully supported by the ops team. Ops owns the infrastructure, dev owns 
the service, and both teams can work according to their strengths.

What are some of the benefits of a 
good CI/CD strategy?
1. Increased speed of innovation and ability to compete in the marketplace
Two identical companies: One implements CI/CD technology and the other doesn’t. Who do you think 
deploys applications faster? While this seems like a silly comparison, because of course the company 
with more automation deploys faster, there are organizations out there still convinced they don’t 
need CI/CD because they’re not looking at their competition. Organizations that understand the 
importance of CI/CD are setting the pace of innovation for everyone else.



6

2. Code in production is making money instead of sitting in a queue waiting to be 
deployed
Organizations that have implemented CI/CD are making revenue on the features they deploy, not 
waiting for a manual check to see if the code is up to par. They already know the code is good because 
they have tests that are automated, and continuous delivery means that code can be deployed at any 
time. They’ve removed human error and delays from the process.

3. Ability to attract and retain talent
Engineers that can focus on what they’re best at will be happier and more productive, and that 
has a far-reaching impact. Turnover can be expensive and disruptive. A good CI/CD strategy means 
engineers can work on important projects and not worry about time-consuming manual tasks. They 
can also work confidently knowing that errors are caught automatically, not right before deployment. 
This kind of cooperative engineering culture inevitably attracts talent.

4. Higher quality code and operations due to specialization
Dev can focus on dev. Ops can focus on ops. Bad code rarely makes it to production because testing 
is automated. Developers can focus on the code rather than the production environment, and 
operations doesn’t have to feel like a gatekeeper or a barrier. Both teams can work to their strengths, 
and automated handoffs make for seamless processes. This kind of cooperation makes DevOps 
possible.

What capabilities are required to 
make this happen?
1. Robust CI/CD
When we use the term “robust,” it’s all about avoiding half-baked or partial solutions. There are 
several CI/CD solutions out there but there are varying degrees of effectiveness. Continuous 
integration and continuous delivery go hand in hand, so having a solution that offers both is ideal. 
The tool you use should offer the automation you need, not just some. If your CI/CD tool is prone 
to failure or “brittle,” it can be just one more thing to manage. This was precisely why the team at 
Ticketmaster replaced Jenkins CI and moved to weekly releases, decreasing their pipeline execution 
time from two hours to only eight minutes to build, test, and publish artifacts.

https://about.gitlab.com/2019/06/12/devops-team-structure/
https://about.gitlab.com/2019/06/12/devops-team-structure/
https://about.gitlab.com/2017/06/07/continous-integration-ticketmaster/
https://about.gitlab.com/2017/06/07/continous-integration-ticketmaster/


7

2. Containers and Kubernetes
Containers have made a huge impact on the way companies build and deploy code. While it was 
once difficult to develop applications with a microservices architecture, over the past five years it has 
become considerably easier with container orchestration tools like Kubernetes, comprehensive CI/
CD tools that automate testing and deployments, and APIs that update automatically. Breaking up 
services so they can run independently reduces dependencies and creates better workflows.

3. Functionality for the entire DevOps lifecycle
Visibility is a huge asset when improving DevOps workflows. For some teams, they can have several 
tools handling different facets of the SDLC, which creates integration issues, maintenance issues, 
visibility issues, and is just plain expensive from a cost standpoint. A complex toolchain can also 
weaken security. In a Forrester survey of IT professionals, 45% said that they had difficulty ensuring 
security across the toolchain.

How would you measure success?
1. Cycle time
Cycle time is the speed at which a DevOps team can deliver a functional application, from the 
moment work begins to when it is providing value to an end user. See how the team at Axway was 
able to achieve a 26x faster DevOps cycle with GitLab.

2. Time to value
Once code is written, how long before it’s released? This delay from when code is written to running 
in production is the time to value, and is a bottleneck for many organizations. Continuous delivery as 
well as examining trends in the QA process can help to overcome this barrier to quick deployments.

3. Uptime, error rate, infrastructure costs
Uptime is one of the biggest priorities for the ops team, and with a good CI/CD strategy that 
automates different processes, they should be able to focus more on that goal. Likewise, error rates 
and infrastructure costs can be easily measured once CI/CD is put in place. Operations goals are a key 
indicator of process success.

4. Team retention rate
Happy developers stick around, so looking at retention rates is a reliable way to gauge how well new 

https://about.gitlab.com/2019/06/17/strategies-microservices-architecture/
https://about.gitlab.com/roi/calculator/
https://about.gitlab.com/resources/whitepaper-forrester-manage-your-toolchain/
https://about.gitlab.com/customers/axway/
https://about.gitlab.com/customers/axway/
https://about.gitlab.com/2019/05/01/trends-in-test-automation/


8

processes and applications are working for the team. It might be tough for developers to speak up 
if they don’t like how things are going, but looking at retention rates can be one step in identifying 
potential problems.

The benefits of a good CI/CD strategy are felt throughout an organization: From HR to operations, 
teams work better and achieve goals. In such a competitive development landscape, having the right 
CI/CD in place gives any company an edge.

What is my CI/CD budget?
1. Free vs. Paid
Open source software is an incredible thing: Not only is it a great way to learn new skills, but its 
collaborative nature lets developers improve and support products they love. Many organizations 
have adopted open source software for good reason. Open source benefits from a thriving 
community that contributes new ideas, and creative minds solve problems creatively. Open source 
innovates, and enterprises get to take advantage of these efforts for free.

While no one can beat the low, low cost of “free” (or at least free in most cases), it’s important to 
consider more than just cost.

Paid software does have cost attached to it, but it comes with distinct advantages. For one, you 
will receive better support with paid software, and higher-tier pricing models even have their own 
dedicated support team. When you pay for a service, you have the right to tell a provider, “I’m having 
trouble with this and I need your help to fix it.” In the realm of CI/CD, where configuration plays such a 
big role, this kind of support pays for itself.

If a free product has everything a team needs, that’s great. After all, GitLab Community Edition 
also offers a complete DevOps lifecycle with CI/CD built in, but there may come a time when an 
organization has to ask themselves: When is paying for a service the better decision in the long run?

2. Cost/benefit analysis
When evaluating a CI/CD solution, it’s important to measure your organization’s current needs vs. 
expected needs. All organizations have some sort of growth plan or expected growth trajectory and 
goals to go with them, such as headcount goals, expansion plans, additional products or services, 

https://about.gitlab.com/solutions/open-source/


9

etc. Factoring in costs and benefits, investing in CI/CD has the potential to help you hit those numbers 
faster.

Room for growth
Will free software give you the room to grow or will it eventually limit you? Will you have the CI 
pipeline minutes you need for increased output?

Better code quality
Will you be able to produce better quality code and reduce code vulnerabilities?

Increased efficiency
Will you be able to reduce manual tasks and improve operational efficiency?

Weighing these factors, the cost/benefit analysis is largely positive when it comes to paying for CI/
CD. Higher-cost plans may be able to offer additional security functionality, support for Kubernetes, 
additional pipeline minutes, and other perks that can help you maximize your CI/CD. When it comes 
to modernizing applications later, it can be a lot more expensive the bigger you are. Adopting 
technologies early, when teams are more nimble, is a much easier and cheaper endeavor.

A dollar isn’t always a dollar, and sometimes the long term benefits far outweigh the cost of 
additional features. It’s important to analyze your CI/CD budget and identify areas for revenue-
generating opportunities.

How does GitLab CI/CD compare 
to other tools?
GitLab is the only single application for the entire DevOps lifecycle, with CI/CD already built right in. 
GitLab allows Product, Development, QA, Security, and Operations teams to work concurrently in a 
single application, allowing for maximum visibility and comprehensive governance. There’s no need 
to integrate and synchronize outside tools as part of a large, complicated toolchain.

GitLab CI/CD is designed for a seamless experience across the SDLC, and while there are other CI/
CD solutions out there, we’re the only application with everything from source code management to 



10

monitoring built in. Teams can collaborate in one environment.

Jenkins vs. GitLab
Jenkins is one of the most popular self-managed, open source build automation and CI/CD developer 
tools. It uses hundreds of available plugins, enabling it to support building, deploying and automating 
projects.

Weaknesses
Plugins are expensive to maintain, secure, and upgrade.

Travis vs. GitLab
Travis CI is a hosted, distributed continuous integration service used to build and test software 
projects hosted at GitHub. Travis CI also offers a self-hosted version called Travis CI Enterprise, which 
requires either a GitHub Enterprise installation or account on GitHub.com.

Weaknesses
No continuous delivery and GitHub hosting only.

Bamboo vs. GitLab
Bamboo Server is a CI/CD solution, part of the Atlassian suite of developer tools. It’s only available 
in a self-managed configuration and source code is available only to paid customers. Bamboo uses 
Bitbucket for understanding how source code has changed (SCM), as well as integrations with other 
tools.

Weaknesses
Those interested in auto-scaling must use Amazon Elastic Compute Cloud (EC2) and pay Amazon 
separately for their usage.

Compare Jenkins vs. GitLab

Compare Travis vs. GitLab

Compare Bamboo vs. GitLab

https://about.gitlab.com/devops-tools/jenkins-vs-gitlab.html
https://about.gitlab.com/devops-tools/travis-ci-vs-gitlab.html
https://about.gitlab.com/devops-tools/bamboo-vs-gitlab.html


11

What the analysts say
The Forrester CI Wave™: Continuous Integration Tools report is a comprehensive evaluation of 10 CI 
tools based on 16 criteria, including ease of installation, security features, analytics, and more. Out of 
the 10 tools reviewed, we were rated #1 by Forrester and received the highest marks in several areas 
such as Current Offering as well as ease of installation/configuration. 

“GitLab delivers ease of use, scalability, integration, and innovation... GitLab 
supports development teams with a well-documented installation and 
configuration processes, an easy-to-follow UI, and a flexible per-seat pricing 
model that supports self-service. GitLab’s vision is to serve enterprise-scale, 
integrated software development teams that want to spend more time 
writing code and less time maintaining their toolchain. The company actively 
engages in the DevOps community, hosting regular webcasts and sponsoring 
developer events. It also stands apart from most other vendors in the space 
by making its planned enhancements road map available to the community 
through a public issue tracker.” 

— THE FORRESTER WAVE™: CONTINUOUS INTEGRATION TOOLS, Q3 2017

Having the right CI/CD in place is a competitive advantage in the current development landscape. 
Teams that utilize the right CI/CD strategy are going to produce better quality software much faster, 
and they’re going to free up valuable resources to focus on long-term growth and innovation. When 
choosing the right solution for you, here are the top things to consider:

 » What is the cost vs. benefit? A revenue-generating expense is not a dollar-for-dollar 
scenario. When it comes to budget considerations, it’s important to look at the big picture 
and discuss value as well as cost. If you’re paying the lowest price but not getting everything 
you need for scale, you’re paying too much. 

 » What are customers saying? Word of mouth is a powerful tool. If you’re interested in a 
particular CI/CD platform, learn about their customers and see what they have to say. Read 
case studies and look for customers with similar problems to yours so you can see how they 
solved them.

https://about.gitlab.com/analysts/forrester-ci/


12

 » What do industry experts think? Happy customers won’t always point out shortcomings 
but industry experts can provide the vendor-neutral perspective you need to make an 
informed decision. Read reports and industry publications to learn how experts evaluate one 
CI/CD platform from another. 

 » What do you think? Independent research is an important last step. You’ve seen what 
customers think, you’ve seen what experts in the field say, and now it’s time to form your 
own opinion. Join webinars to learn more about a product and ask questions, and compare 
product features carefully.

About GitLab
GitLab is a complete DevOps platform, delivered as a single application. Only GitLab enables Concurrent DevOps, 

unlocking organizations from the constraints of today’s toolchain. GitLab provides unmatched visibility, radical new 

levels of efficiency and comprehensive governance to significantly compress the time between planning a change and 

monitoring its effect. This makes the software lifecycle 200% faster, radically improving the speed of business. 

GitLab and Concurrent DevOps collapse cycle times by driving higher efficiency across all stages of the software 

development lifecycle. For the first time, Product, Development, QA, Security, and Operations teams can work 

concurrently in a single application. There’s no need to integrate and synchronize tools, or waste time waiting for 

handoffs. Everyone contributes to a single conversation, instead of managing multiple threads across disparate 

tools. And only GitLab gives teams complete visibility across the lifecycle with a single, trusted source of data to 

simplify troubleshooting and drive accountability. All activity is governed by consistent controls, making security and 

compliance first-class citizens instead of an afterthought. 

Built on Open Source, GitLab leverages the community contributions of thousands of developers and millions of users to 

continuously deliver new DevOps innovations. More than 100,000 organizations, including Ticketmaster, ING, NASDAQ, 

Alibaba, Sony, and Intel trust GitLab to deliver great software at new speeds.

Start your free GitLab trial

https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=modernizecicd&utm_content=freetrial


13


